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Abstract

The isomorphic mappings between the canonical bases appearing in the general structure
theory of semi-simple real Lie algebras and the bases obtained directly from the pseudo-
orthogonal groups are investigated in detail, and it is shown that these mappings can be
cast in a remarkable simple form which is valid for all cases.

1. Introduction

The pseudo-orthogonal groups SO(p, ¢} are of considerable interest in
theoretical physics. The most important are SO(3, 1) (the homogeneous
Lorentz group), SO(3, 2) and SO(4, 1) (the de Sitter groups), and SO(4, 2)
(the conformal group), but others, such as SO(2, 1), have also found many
applications.

For many purposes it is convenient to work directly with the definition
of SO{p, q) as the set of real (p + ¢} x (p + g) matrices u such that detu=+1
and

lgu =g

where the tilde denotes the transpose and g is a diagonal matrix with diagonal
elements = 1, p being of one sign and g of the other. The Lie algebra so(p, q)
of SO(p, g} may then be defined as the set of real (p + ¢) x (p + ¢) matrices
asuch that tra=0and

agtga=0 (1.1)

On the other hand it is often more convenient to work with the canonical
form £ of the Lie algebra so(p, ¢) that appears naturally in the standard
structure theory of real semi-simple Lie algebras. (This theory, due mainly to
Cartan (1914, 1929) and Gantmacher (1939a, 1939b), will be summarized
briefly in Section 2.)
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Even in two closely related problems it can happen that the so(p, ) basis
is the most useful for one problem while the canonical basis is the most
convenient for the other. For example, the recent determination of the
maximal solvable subgroups of SO{p, ¢) by Patera, Winternitz & Zassenhaus
(1974) employs the so(p, g) basis, while for embeddings of SO(p, q) with
other semi-simple Lie groups (Cornwell, 1971a, 1971b, 1972; Ekins & Cormwell,
1974a, 1974b, 1974c) the canonical basis is the most convenient.

Similarly in considering the infinite-dimensional unitary irreducible repre-
sentations of the non-compact groups SO(p, q) the canonical form has been
used by Joseph (1970) and Joseph & Hieggelke (1970), while Fischer ef al
(1966), Limic et al. (1966), and Raczka et al. (1966) found the so(p, q) basis
the more convenient.

It would therefore be useful to have a simple expression for the isomorphic
mapping between the two sets of bases. Of course it is obvious (at least in
outline) how this can be achieved, that is, by choosing a matrix representation
of dimension (p +¢) of the corresponding complex Lie algebra and then
applying an appropriate similarity transformation. The purpose of this note
is to demonstrate the rather surprising fact that, with a judicious choice of
conventions, this similarity transformation can be cast in a particularly neat
and simple form, which is given explicitly for all cases.

2. The Canonical Basis

In this section a brief account will be given of the construction of the
canonical basis of & along the lines developed by Cartan (1929) and Gantmacher
(1939a, 1939b). (Further details using the same conventions as in the present
note may be found in the papers of Cornwell (1971a, 1971b, 1972).)

For p + ¢ odd, so(p, q) is a real Lie algebra whose complexification #'is
B,, wherep + g =21+ 1. For p + g even, ¥ is Dy, where p + g = 21 (Only the
case [ > 2 will be considered, as when p + g = 2 the Lie group SO(p, q) is
Abelian.) Each complex Lie algebra % has a compact real Lie algebra %,
(which is isomorphic to so(p + ¢)). The construction of the real non-compact
semi-simple Lie algebras % having complexification P canbe accomplished
by the following theorem of Cartan (1929): ‘First find the involutive auto-
morphisms S of &,. Then take a basis of &, consisting of the “eigenvectors”
of §, multiply those eigenvectors having eigenvalue —1 by 7 and leave the
remaining eigenvectors unchanged. To the basis so obtained there corresponds
a real form Lof #.

As is well known, & itself has a canonical form, for which it is most con-
venient to use the conventions of Jacobson (1962) (particularly Chapter 4
and especially equation (28) of page 121). The basis elements of the Cartan
subalgebra ¥ of £ will be denoted by A4, k4, . . ., by, a general element of 5
will be denoted by %, & denotes a root and e,, the corresponding basis element
of #such that [e,, h] = afh)e,. The canonical basis of the compact real form
&, of Pmay then be taken to consist of the elements ihj,i=1,2,...,1,and
the elements (e, + e—o) and i(eq — e—g) for every root o of &.

Gantmacher (1939a) has shown that every automorphism § of £, can be
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written in the form S = U™ZU, where U is an inner automorphism of &, and
Z is a chief automorphism of Z,. Clearly S is involutive if and only if Z is
involutive. As S and Z then generate isomorphic real forms, it is sufficient to
consider only the real forms generated by Z.

Gantmacher (19394a) has also shown that every chief inner automorphism
of £, has the form exp(ad /), where # € H NZ,., and ad denotes the adjoint
representation of %,. Each of the basis elements of the above canonical basis
for &, is then an eigenvector of Z, the elements ii; corresponding to eigen-
value +1,j=1, 2, ..., 1, while (¢, +e_,) and i(e, — e—,) both correspond to
eigenvalue exp {a()} (=%1).

The compact real form %, of B; has only inner automorphisms. The chief
inner involutive automorphism Z = exp(ad 4) may be chosen so that for the
real form ZLisomorphictoso(2U+1-2r,2r),7r=1,...,1,

+1, f=1,..,01—~1,jFl—r
exp {0 ()} = a ! (2.1)
-1, j=l—rl
where a;, &y, . . ., oy are the simple roots of B; (cf. Cornwell, 1971a, Section

4.2).

For D, the situation is more complicated, as %, has both inner and outer
automorphisms. The real form % isomorphic to so(2l — 2r, 21),r=1, . . .,
1411, (where [4] denotes the largest integer < 41) is generated by the chief
inner automorphism Z = exp (ad k), where A may be chosen so that

+1, i=1,..,0L jFr
exp {o;(h)} = { ) . (2.2)
=i, J=r
(cf. Cornwell, 19713, Section 4.4). The real form % isomorphic to
so(20 —2r—1,2r+1),7=0,1, .., [31], is generated by the chief outer
automorphism Z = Z exp (ad ), where 2 may be chosen so that forr =1

+1, i=1,... L j#Fl—-r—1
exp {o5(h)} ={*1 T (2.3)
while forr=0
+1, j=1,..,1-2
exp {o;(h)} ={_1 i=l 1.0 (2.9

{(cf. Cornwell, 1972). Here Z is an automorphism of &, (and hence of Q)
such that

Zohj =hy, j=1,...,1-2;  Zoh_y =h; Zolhy =hj_y;
Zoe; =e¢j, j=l.. . 01=-2  Zeey, =ep Zoe; =ej_1;
Zoe—j=ej, j=1,..,1-2;  Zpe_g_p=e-;; Zoe-; Te-q_yp;
(cf. Gantmacher, 1939a, 1939b; Cornwell, 1972), where ¢;, ¢; denote the

basis elements of & corresponding to the roots ¢; and —ay respectively. This
implies that i, (ej + e—j), and i{ej — e-;),i = 1,2, ...,1— 2, together with
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i1 th), {(er—1te-g_p) t(eted},andi{(e;1—e-g_y) +
(e; — e_p} are eigenvectors of Zg with eigenvalue +1, while i(h; _; — A;),
{les—1te-g_y)—(este-p},andi{(e;—1 —e-g_1)) — (e, — e~ )} are
eigenvectors of Z, with eigenvalue —1. For the non-simple roots o, Zge, =
Xaeg, Where Xo = X-q = £1 and the root § is related to « in a known way (cf.
Gantmacher, 1939a). If a = §, then (e, + ¢—) and i(e, — e-,) are eigenvectors
of Zo with eigenvalue +1, while if a # §, {(en + €—o) + (eg + e-5)} and
i{(eq — ) +(eg — e—p)} are eigenvectors with eigenvalue +1, and
{(ea te) —(egtep)} and i{(ey — e-,) — (eg — e—g)} are eigenvectors with
eigenvalue —1. As the & of Z = Zy exp(ad k) has the property that a(h) = B(k)
when Zge,, = Xqeg (even when the roots « and f are not identical}, it follows
that all of the above eigenvectors of Z are also eigenvectors of Z = Zyexp(ad h),
with eigenvalues that are easily deduced.

The complex Lie algebra By may be realised (cf. Konuma ez al., 1963, page
36) as the set of (2/ + 1)-dimensional complex matrices B such that trB=0
and

BG +GB=0 (2.5)
where
)y o o
G= ( 0 o 10 (2.6)
AN (G 10))

(Here 0() and X(!) denote the I x [ zero and identity matrices respectively.)

An explicit (27 + 1)-dimensional matrix representation of the basis elements
hy, ko, . . ., 1y of the Cartan subalgebra and of the basis vectors ¢; corresponding
to the simple roots of B; is then given by

hi=—ejipje1 ¥ €urenjrrer T €42 j42 — Gars2j4142, J=1 . 00— 1
hy=2{—e1,141t €20+1,2041}

€= {ej+1,j+2 - ej+l+2,]’+l+1} {2021 — 1)}—1125 j=1,...,1-1
e = {e1241 — €41, 11 {22 — D}

(Cornwell, 1971a, Appendix A). (Here (€jx)un = 810 kp.)

Similarly the complex Lie algebra D; may be realised as the set of 2F-
dimensional complex matrices B satisfying tr B = 0 and condition (2.5), but

now with
_[(o0) 1) Lo
¢ (I(Z) om) 28

in place of (2.6). The corresponding 2/-dimensional matrix representation of
the generators Ay, ..., lyand ey, . . ., e; for D, is then given by
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hy=—ejtejert e e1— Gerrtjrier, J=1,0 0011
hy=—e_1;_1+ey_121-1— €y tf/zzl, % (2.9)
e ={eje1— s e A0 - DI j=10000-1
;= {e/_y2— e 1} {41~ D}7?

(Cornwell, 1971a, Appendix A).

3. Similarity Transformation from the Canonical Form to so(21 + 1 — 2r, 2r),
r=0,1,...,1

Theorem. Let b be an element of the matrix realisation of the canonical
form & Then the similarity transformation to the so(2! + 1 — 2r, 27} Lie
algebra (forr=0,1,...,0) is given by

a=Sbs™!
where

$=(®T (3.1
T being given by

1, j=2%k-2, k=2,...,0+1, and [j=2k-21-2,

k=1+2,...,21+1
i, j=2k— 3, k=2,...,1+1
—i, J=2k—-21-3, kE=1+2,...,21+1 3.2)
V2, =2+l k=1

0, all other j, &,
provided that the diagonal elements of g of (1.1) are arranged so that

82,2 = 821,21 1=1,2,...,1 (3.3)

(M =

and

&2+ 1,2i+1 = &—12i—18xp ()}, j=1,2,...1 349

where exp {e;(h)} are given by equations (2.1). In particular the elements ih;
of H N Lare transformed so that

~My; v T Moi_q o, f=1,...,01—1
S(z'hj)S‘1={ yerzir2 tMoj1 25, ] (3.5)

My 1,2, T=1
where
Mjp = ejx — ek
It will be noted that the only dependence of § on the elements of g lies in
the factor 4/g of (3.1), which is defined to be the diagonal matrix such that

(V) = {

i, ifgjj = 1
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T is the matrix that performs the corresponding similarity transformation for
the compact case r = 0 (Cornwell, 1971a, Appendix B). The remarkable aspect
of the theorem is that S can be cast in such a simple form for all cases.

Of course it is possible to rearrange the diagonal elements of g so as to
bring all the elements of the same sign together by a further similarity trans-
formation. For example a further similarity transformation with the matrix
U(where Uy =Us, =1, Ujj=1forj=1,...,21+1,]+s,t, and all other
elements zero), which interchange rows s and ¢ and columns s and ¢, will
correspond to interchanging g, and g,.

Before outlining the proof of the theorem, two examples will be given for
! =2, for which

0 i 0 —i O
0 1 0 1 0

T={ 0 0 i 0 —i
0 0 1 0 1

V2 0 0 0 0

For r = 1, i.e. for a mapping onto so(3, 2), equations (2.1), (3.3), and (3.4) imply
that the diagonal elements of g are such that g55 = —£44 = €33 =822 =&11-
For r = 2, i.e. for a mapping onto s0(4, 1), equations (2.1), (3.3), and (3.4)
imply that —gss = 844 = £33 =822 = &11-

In proving the theorem consider first the compact case in which 7 =0,
gj=1forj=1,...,2[+1,and S=T. As implied in Section 2, a general
element of &, has the form

N~

Z7\]'hj + z {Taea + T;Ze—a}
o

W

=1

where the ; are real and the 7, are complex. The requirement that a be real
implies that:

T(th)T™ must be real, forj=1,2,...,1 (3.6)
and, as all the matricese,, e, are real:
ey = (T T*)eo(T7IT*)™! 3.7

for every root . Also the requirement that a satisfies (1.1) (i.e.a+a=01in
this case) implies that

TT=1G (3.8)
where 7 is some constant and G is given by (2.6). The simplest matrix T
satisfying (3.6), (3.7) and (3.8) is that given in (3.2). Moreover this T has
the property that

v ~Mpjyy o542 tMoj_27,  7=1,..,1-1
Tzh-T‘={ A (3.9
(#hy) My, T=1

Turning now to the non-compact cases for which » # 0, the tentative
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assumption will first be made that S has the form (3.1). It then has to be
verified that a is real and satisfies (1.1) for an appropriate ordering of diagonal
elements of g. (The traceless condition is automatically satisfied.) But a satis-
fies (1.1) while every element of % satisfies (2.5) if and only if

SgS =+'G (3.10)

where 7' is some constant. However, as a consequence of (3.8), the form (3.1)
satisfies (3.10) automatically.

The reality conditions on a are more complicated. Firstly, as thy, thy, . . .,
thy are all basis elements of #(as well as of #,), the reality condition implies
that S(ih}-)S—1 must be real forj=1, ..., 1 Taken with (3.1) and (3.9), this
implies that (1/g) "' Ma;_ 1 2;(1/8) must be real forj = 1, . .., /, which can be
ensured by the requirement (3.3) (as then /g commutes with all My;_ 1,2/)-

Secondly, if exp {a(h)} = +1, (e, + ey} and i(e, — e—,) are members of
Plas well as of £ ), so that, as in (3.7), the reality condition implies that

ey = (8718¥)e_o(S71S¥) ! (3.11)
Similarly, if exp {a{h)} = —1, as i{e, + e—,) and (e, — e_) are then basis
elements of &, (3.11) is replaced by
e = —(87'8%) e (8718
Both cases can be taken together in the requirement that
e = exp (M HST SF e (ST'S¥) ™!

With the form (3.1), as (/&) ™' = (/2)*, on using (3.7) this requirement
becomes that

e—o = exp (@(MHT gD e-o(T™ g™ (3.12)
for every root a. However, with T given by (3.2), and with (3.3) satisfied,

T el = diag{g2i+1,2/+1,811- 833 - -+ 82— 1,21~ 1, 8115833 - - 82— 1,211}
(3.13)

It is then easily verified that if (3.12) is satisfied for the simple roots, then it
is satisfied for all the roots, both positive and negative. As e, = —§,, (2.7)
and (3.13) show that (3.12) is satisfied for the simple roots if and only if
(3.4) is satisfied. Thus all the reality conditions on a are met if g is chosen in
accordance with (3.3) and (3.4).

4. Similarity Transformation from the Canonical Form to so(2] — 2r, 2r),
r=0,1,..., [3]

Theorem. Let b be an element of the matrix realisation of the canonical
form.%. Then the similarity transformation to the so(21 — 2r, 2r) Lie algebra
(forr=0,1,..., [4])is given by

a=Sbs™! 4.1
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where

S=(voT (42

and T is now given by

1, j=2k, k=1,...,1, and
j=2k - 21, k=1+1,...,2
(D = i, j=2%-1, k=1,...,1 (4.3)
—I, J=2k-20-1, k=1+1,...,2
0, all otherj, k

provided that the diagonal elements of g of (1.1) are arranged so that

821,21 =&j—12i—1, J=1,...1 (4.4)
and

Zaj+2,27+2 =822 expley(M)}y,  j=1,...,1-1 (4.5)
where exp {«; (%)} are given by equations (2.2). In particular the elements
th; of 0 N P are transformed so that
snysi = | “Masraeat Moo T2 LI )
Maj_321_0+My 12, =1
Again the only dependence of S on g lies in the factor /g. Also T is again
the matrix that performs the similarity transformation for the compact case
r =0, 50 (4.6) is also satisfied with S replaced by T. As the canonical form
Fisomorphic to so(2] — 2r, 2r) is generated by an inner involutive automor-
phism, the method of proof of this theorem is identical to that given for
so(21+ 1 - 2r, 2r).
As an example consider the case I =3 and 7 = 1, i.e. the mapping onto
so(4, 2). Equations (2.2), (4.4) and (4.5) then imply that —gge = —g55 =
—8a4~ —833 8227811+

5. Similarity Transformation from the Canonical Form to
so(2—2r—1,2r+ 1),r=0,1,..., 3]

Theorem. Let b be an element of the matrix realisation of the canonical
form . Then the similarity transformation to the so(2f — 2r — 1, 2r + 1) Lie
algebraforr=0, 1,..., [3/], is given by (4.1), where S is again given by
(4.2) and T by (4.3), provided that the diagonal elements of g of (1.1) are
arranged so that

8227 =&j-12i—1 1=1,2,..,01-1 (5.1)
but

82121 —£21—1,21— 1 (5.2)
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and
&ojranjrz =&yziexp iy}, j=1,2,...,1 (5.3

where exp {a; ()} are given by equations (2.3) or (2.4). In particular the
elements of H M Pare transformed so that

S(ih)S™' = —Myj 1ajs2 t Myj12;,  F=1,..,1-2
S{ith,_ 1 +h)}S™ =My 325
S{hy_ 1~ h}S™ = 2822 Ny 1
where
Nj =g T ey

As an example consider the case / = 2 with 7 = 0, ie., the mapping onto
s0(3, 1). Equations (2.4), (5.1}, (5.2), and (5.3) then imply that —g44 =g33=
£22 =811, and S{i(h; + hp)}S7' = 2My,, S{hy —hy}S7! = —2¢; Ny,

The canonical form % isomorphic to so(2! — 2r — 1, 2r + 1) is generated
by an outer involutive automorphism, so that the method of proof given in
Section 3 has to be modified. However, it is still true that with the form
(4.2) for S, the condition (1.1) is automatically satisfied, so that it is only
necessary to consider the reality conditions on a.

As before, for the basis vectors thy,j= 1, ...,/ ~ 2,and i(h;_ + h) the
reality condition implies that (/g)"1Mj;_ 1 5;(/8) must be real forj =1, 2,

. .1 — 1, which can be ensured by the requirement {5.1). However, for the
basis element (h;_; — h;) (as (4.6) is also satisfied by 8 replaced by T),
S(h;_{ —h)S7t= (\/g)-1 2iMy; _1,2/(~/8), which is real if and only if
g21—1,21—1= ~&2,21, and when this is 50 S(h; _; — h))S ™ = 2g2; /Ny _ 1 21.
For the other basis vectors it is easily shown that the generalisation of the
condition (3.12} is

ey = exp {a() HT " gT){Zoe (T ' gD) ™ (5.4)
where Z is the automorphism described in Section 2. It is easily verified that

if (5.4) is satisfied for the simple roots, then it is satisfied for all the positive
roots, and for the negative roots as well if

(T gD = (T gy, k=1,...,2 (5.5)
But, with (4.3), (5.1) and {5.2),

(T7gD)y =824 1241, 1=1,...,01—1
(T7'gD); =goj—2—1,2j—21—1, F=1+1,..,20—=1) (5.6)
(T 1), 0 = (T gDoss = 221

with all other elements zero, so that (5.5) is satisfied. It is therefore only
necessary to test (5.4) for the simple roots. For oy, o, . . ., 075, as 265 = ¢,
the condition (5.4) is equivalent to (3.12) and again gives (5.3) (forj =1, 2,
c.ul—2).Foroy_;and oy, a8 Zge; . = ey and Zpe; = e; 4, by (2.9) and
(5.6) the condition (5.4) is satisfied if g5 21 = g47- 2,212 exp {&;(7)}.



342 J. F. CORNWELL

6. Mapping of the Maximal Compact Subalgebra

The ‘natural’ maximal compact subalgebra 4 of #may be defined as the
set of elements b €% such that Zb = b, where Z is the chief involutive auto-
morphism described in Section 2. Of course any automorphism of £ applied
to A gives another maximal compact subalgebra of #that is isomorphic to A

The ‘natural’ maximal compact subalgebra 2™ of so(p, ) may be defined
as the set of matrices a € so(p, q) such that a,, = 0 if g, # g4q, Where g is
the matrix of equation (1.1). Clearly#"'is isomorphic to so(p) ® so(g), and
again any automorphism of so(p, ¢) applied to#" gives another maximal sub-
algebra of that is isomorphic to .

Theorem. The isomorphic mappings of & onto so{p, ¢) considered in
Sections 3, 4 and S each map the natural maximal compact subalgebra
onto the natural maximal compact subalgebra "

It is obvious that " must be mapped onto a subalgebra of so(p, ¢) that is
isomorphic to #¢~'. What is remarkable about this theorem is that ¢ is
mapped directly onto #” itself.

An outline of the proof will be given for the cases in which Z is an inner
automorphism. (The case in which Z is an outer automorphism is more
difficult. In fact the simplest approach for this case is that of direct verifica-
tion.) If Z = exp(ad k) is a chief inner automorphism, the basis elements of
A'consist of ihy,j =1, . . ., 1 together with (e, + e—,) and i(e, — e-,) for
roots a such that exp {a(h)} = +1. It follows immediately from equations
(3.5) and (4.6) (taken with (3.3) and (4.4) respectively) that ik;,j=1,...,1
are mapped into #"'. For (e, + e—y) and i(e, — e-) with exp {a(h)} =1, as
/& is diagonal and as Te-, T ™' = (Te, T™)* by (3.7), it has only to be shown
that (TeaT"l)pq = 0 when gpp 7 gqq . In fact it is easier to demonstrate the
more general proposition that (TeaT"l)pq =0 when gpp, # gqq €xp {a(h)} for
every root «, for if this proposition is true for the simple roots then it is true
for all the roots. But equations (3.3), (3.4), (4.4) and (4.5) show that the
proposition is true for the simple roots, as direct calculation for By gives

${My;_ 1741 + iMaj_ 12742 — iMaj2j41
Te;T™! = +Myj o2} 2020 - DYV =101 -1
HMoppy, 2 + Mgy oy JH2A - 137Y2, =1

and for D; gives

SMoj_ 1o+ 1t Moj_ 1 2j+2 — IMgj 2541
Te, T = + My} {420 DY V2, j=1,.. 01
I My 3211 +iMyy_30+ My 7251
+ My 40— DY V2 =L



LIE ALGEBRA BASES FOR THE PSEUDO-ORTHOGONAL GROUPS 343

References

Cartan, M. E. (1914). Annales de 'Ecole Normale Supérieure, 3-eme série, 31, 263.

Cartan, M. E. (1929). Journal de Mathématiques Pures et Appliguees, 8, 1.

Cornwell, J. F. (1971a). Reports on Mathematical Physics, 2,239.

Cornwell, J. F. (1971b). Reports on Mathematical Physics, 2,289,

Cornwell, J. F. (1972). Reports on Mathematical Physics, 3,91.

Ekins, J. M. and Cornwell, J. F. (1974a). Reports on Mathematical Physics, 5,17.

Fkins, J. M, and Cornwell, J. F. (1974b). Reports on Mathematical Physics (to be
published).

Ekins, J. M. and Cornwell, J. F. (1974c). Journal of Mathematical Physics (to be
published).

Fischer, J., Niederle, J. and Raczka, R. (1966). Journal of Mathematical Physics, 7, 816.

Gantmacher, F. (1939a). Recueils Mathématigues (Mat. Sbornik) N.S. 5 (47),101.

Gantmacher, F. (1939b). Recueils Mathématiques (Mat. Sbornik)y N.S.5 (47), 217.

Jacobson, N. (1962). Lie Algebras. Interscience, New York.

Joseph, D, W, (1970). Journal of Mathematical Physics, 11,1249,

Joseph, D. W. and Hieggelke, C. 1. (1970). Journal of Mathematical Physics, 11,1272,

Konuma, M., Shima, K, and Wada, M. (1963). Progress of Theoretical Physics, Supplement
28, 1.

Limic, N., Niederle, J. and Raczka, R. (1966), Journal of Mathematical Physics, 7, 2026,

Patera, J., Winternitz, P. and Zassenhaus, H. (1974), Journal of Mathematical Physics,
15,1932,

Raczka, R., Limic, N. and Niederle, 1. (1966). Journal of Mathematical Physics, 7, 1861,



