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Abstract 

The isomorphic mappings between the canonical bases appearing in the general structure 
theory of semi-simple real Lie algebras and the bases obtained directly from the pseudo- 
orthogonal groups are investigated in detail, and it is shown that these mappings can be 
cast in a remarkable simple form which is valid for all cases. 

1. Introduction 

The pseudo-orthogonal groups SO(p, q) are of  considerable interest in 
theoretical physics. The most impor tant  are S0(3,  1) ( the homogeneous 
Lorentz group), S0(3,  2) and S0(4, 1) (the de Sitter groups), and S0(4,  2) 
(the conformal group), but  others, such as S0(2, 1), have also found many 
applications. 

For  many purposes it is convenient to work directly with the definition 
of  SO(P,  q) as the set of  real (p + q) x (p + q) matrices u such that  det  u = +t  
and 

~gu = g 

where the tilde denotes the transpose and g is a diagonal matrix with diagonal 
elements -+ 1, p being of  one sign and q of  the other. The Lie algebra so(p, q) 
of  SO(p,  q) may then be defined as the set of  real (p + q) x (p + q) matrices 
a such that  tr a = 0 and 

ag+ga=0 (1.1) 

On the other hand it is often more convenient to work with the canonical 
form ~ ° o f  the Lie algebra so(p, q) that appears naturally in the standard 
structure theory of  real semi-simple Lie algebras. (This theory,  due mainly to 
Cartan ( t  914, 1929) and Gantmacher  (1939a, 1939b), will be summarized 
briefly in Section 2,) 
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Even in two closely related problems it can happen that the so(p, q) basis 
is the most useful for one problem while the canonical basis is the most 
convenient for the other. For example, the recent determination of the 
maximal solvable subgroups of SO(p, q) by Patera, Winternitz & Zassenhaus 
(1974) employs the so(p, q) basis, while for embeddings of SO(p, q) with 
other semi-simple Lie groups (Cornwell, 1971a, 1971b, i972; Ekins & Comwell, 
1974a, 1974b, 1974c) the canonical basis is the most convenient. 

Similarly in considering the infinite-dimensional unitary irreducible repre- 
sentations of the non-compact groups SO(P, q) the canonical form has been 
used by Joseph (1970) and Joseph & Hieggelke (1970), while Fischer et al. 
(1966), Limic et al. (1966), and Raczka et al. (1966) found the so(p, q) basis 
the more convenient. 

It would therefore be useful to have a simple expression for the isomorphic 
mapping between the two sets of bases. Of course it is obvious (at least in 
outline) how this can be achieved, that is, by choosing a matrix representation 
of dimension (p + q) of the corresponding complex Lie algebra and then 
applying an appropriate similarity transformation. The purpose of this note 
is to demonstrate the rather surprising fact that, with a judicious choice of 
conventions, this similarity transformation can be cast in a particularly neat 
and simple form, which is given explicitly for all cases. 

2. The Canonical Basis 

In this section a brief account will be given of the construction of the 
canonical basis of~q' along the lines developed by Cartan (1929) and Gantmacher 
(1939a, 1939b). (Further details using the same conventions as in the present 
note may be found in the papers of Cornwetl (197 ta, 197 l b, 1972).) _ 

For p + q odd, soU,  q) is a real Lie algebra whose complexification .L~qis 
Bt, where p + q = 2/+ 1. For p + q even ,~ i s  Dr, where p + q = 2/. (Only the 
case l 1> 2 will be considered, as whenp + q = 2 the Lie group SO(p,  q) is 
Abelian.) Each complex Lie algebra ~ h a s  a compact real Lie algebra ~c~ c 
(which is isomorphic to so(p + q)). The construction of the real non-compact 
semi-simple Lie algebras £~having complexification ~ can be accomplished 
by the following theorem of Cartan (1929): 'First find the invohitive auto- 
morphisms S of~L~'c. Then take a basis of~q'e consisting of the "eigenvectors" 
of S, multiply those eigenvectors having eigenvalue -1  by i and leave the 
remaining eigenvectors unchanged. To the basis so obtained there corresponds 
a real form ~ f ' o f~ . '  _ 

As is well known, ~qaitself has a canonical form, for which it is most con- 
venient to use the conventions of Jacobson (1962) (particularly Chapter 4 
and especially equation (28) of page 121). The basis elements of the Cartan 
subalgebra JC of ~wi l l  be denoted by h 1, h2, • • -, h~, a general element of ~f 
will be denoted by h, a denotes a root and ea the corresponding basis element 
of~asuch that [ea, h] = o~(h)ec~. The canonical basis of the compact real form 

of.o--~may then be taken to consist of the elements ihj,] =..1, 2 . . . . .  l, and 
the elements (% + e ~ )  and i(ec~ - e-~) for every root a of~qf. 

Gantmacher (1939a) has shown that every automorphism S o f ~ c  can be 
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written in the form S = U-1ZU, where U is an inner automorphism of~°c and 
Z is a chiefautomorphism of L~'c. Clearly S is involutive if and only i f Z  is 
involutive. As S and Z then generate isomorphic real forms, it is sufficient to 
consider only the real forms generated by Z. 

Gantmacher (193%) has also shown that every chief inner automorphism 
of ~c4' c has the form exp(ad  h), where h E ~ N~q'c, and ad denotes the adjoint 
representation of~qc. Each of the basis elements of  the above canonical basis 
for ~a c is then an eigenvector of  Z, the elements ihi corresponding to eigen- 
value +1 , j  = 1, 2 . . . . .  l, while (e~ + e - a )  and i(ea - e-a) both correspond to 
eigenvalue exp {a(h)} (=-+ I).  

The compact real form.gac of Bz has only inner automorphisms. The chief 
inner involutive automorphism Z = exp (ad h) may be chosen so that for the 
real f o r m ~ ' i s o m o r p h i c  to so(2l + 1 - 2r, 2r), r = 1 . . . . .  l, 

exp{a j (h )}=(+l ,  j = l  . . . . .  l -  1 ; j ~ = l - r  
[ - 1 ,  j = l - r , l  

(2.1) 

where % ,  ee2 . . . . .  eel are the simple roots o fBt  (cf. CornwelI, 1971a, Section 
4.2). 

For Dz the situation is more complicated, as ~fe has both inner and outer 
automorphisms. The real form,%°isomorphic to so( 21 - 2r, 2r), r = I . . . . .  
[½l],'(where [½1] denotes the largest integer ~< 1l) is generated by the chief 
inner automorphism Z = exp (ad h), where h may be chosen so that 

( + 1 ,  j=  1 , . . . , l ;  ] ~ r  
exp {eel(h)} (2.2) 

=[ -1 ,  ~ j=r  

(cf. Cornwell, 1971 a, Section 4.4). The real form c~ isomorphic to 
so(2l - 2r - I ,  2r + 1), r = 0, 1 . . . .  , [½/], is generated by the chief outer 
automorphism Z = Z 0 exp (ad h), where h may be chosen so that for r />  1 

+1, j = l  . . . . .  l ; j g = l - r -  1 
exp {ee/(h)) = - I ,  j = l - r - 1 (2.3) 

while for r = 0 

[+1,  j = 1 , . . . ,  t -  2 
exp {eel(h)} = [ - 1 ,  j = l - 1, l (2.4) 

(cL Cornwell, 1972). Here Zo is an automorphism O f f c  (and hence of  re') 
such that 
Zoh j =hi, j= 1 . . . . .  l--  2; Zohl-1  =hl ;  Zohl = h ~ - l ;  ] 

Zoe] =ej, j=  l . . . . .  l - 2 ;  Zoel-1 =et ;  Zoez = e t - 1 ;  ! 

Zoe_ i = e _ i ,  j = l , . . . , l - 2 ;  Z o e - ( l - 1 ) = e - l ;  Zoe- i  = e - q - l ) ; )  

(cf. Gantmacher,  1939a, 1939b; Cornwell, 1972), where ei, e_ I denote the 
basis elements of~'°corresponding to the roots aj and - a i  respectively. This 
implies that ihj, (e i + e-j), and i(ej - e - j ) , j  = 1, 2 . . . . .  l - 2, together with 
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i ( h l -  1 + ht) ,  { ( e l -  1 + e - ( l -  1)) + (el  + e - z ) } ,  and i {(e l _  1 - -  e- ( l -1) )  + 
(el  -- e - l ) }  are eigenvectors of  Zo with eigenvalue +t ,  while i ( h i _  1 - h l ) ,  
{ ( e l -  1 + e_(l_ l)) - (et + e-z)) ,  and i ((ez-  1 - e - q _  1)) - (et - e - z ) }  are 
eigenvectors of Zo with eigenvalue - 1. For the non-simple roots oq Z o e e  = 
xeef, where Xe = X-~ = -+ 1 and the root/3 is related to c~ in a known way (cf. 
Gantmacher,  1939a). I f ~  =/3, then (ee + e - ~  and f i e  e - e - a )  are eigenvectors 
of  Zo with eigenvalue +1, while ifcx :/:/3, {.(% + e - a )  + (e~ + e-~)} and 
i{(ec~ - e-cO + (e~ - e_8)} are eigenvectors with eigenvalue +1, and 
{(ee + e - a )  - (eft + e_~)} and i{(ec~ - e - ~ )  - (eft - e-fl)} are eigenvectors with 
eigenvalue - 1 .  As the h of  Z = Z o exp (ad h) has the property that a(h)  =/3(h) 
when Zoec~ = x~e~ (even when the roots c~ and/3 are not identical), it follows 
that all of  the above eigenvectors o f Z  o are also eigenvectors o f Z  = Z o exp(ad h), 
with eigenvalues that  are easily deduced. 

The complex Lie algebra Bz may be realised (cf. Konuma e t  aL, 1963, page 
36) as the set of (2l + D-dimensional complex matrices B such that tr B = 0 
and 

+ GB = o (2 .s )  

where 

( ?  o o t 
G = o ( 0  

I(l) 0 ( l ) ]  
(2.6) 

(Here 0(1) and I(/) denote the l x l zero and identity matrices respectively.) 
An explicit ( 2 / +  1)-dimensional matrix representation of  the basis elements 
hi ,  h2 . . . . .  hi of  the Cartan subalgebra and of the basis vectors ej corresponding 
to the simple roots of  Bz is then given by 

hj=-ej+l,j+l+ej+l+l,j+l+l +ej+2,j+2-ej+l+2,j+t+2, ] =  1 . . . . .  t -  1 

hi = 2{-e1+1,l+1 + e2l+1,21+1} 
ej = {ej+l,j+2 -- ej+l+2,j+l+ 1} {2(2l -- 1)} -1/2, j = 1 . . . .  , l -- 1 (2.7) 

et = {el,2l+1 -- e~+l, 1} {2(2l -- 1)} -1/2 

(Cornwell, 1971 a, Appendix A). (Here (e jk )m,  = ~Sju8 ko.) 
Similarly the complex Lie algebra Di may be realised as the set of  2/- 

dimensional complex matrices B satisfying tr B = 0 and condition (2.5), but 
now with 

[o(l) (2.s) 
G = \l(0 o ( l ) ]  

in place of (2.6). The corresponding 21-dimensional matrix representation of 

the generators h i, - • -, ht and el, • •. el for DI is then given by 
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hj=-e77+ei+u+l +ej+l,/+l -ej+z+l,j+l+l, j= 1 . . . . .  l -  1~ 
ht -el-l , t-1+e21-l,2t-l-etl+e21'21 ) (2.9) 
ej = {e / , /+  1 - ej+l+l,j+t}(4(l - 1)} -1 /2 ,  ] = 1 . . . . .  l -- 1 

el = ( e t -  1,2l -- el,21-- 1} ( 4 ( I  --  1 ) } - t / 2  

(Cornwell, 1971a, Appendix A). 

3. Similarity Transformation from the Canonical Form to so(21 + 1 - 2r, 2r), 
r = 0 , 1  . . . . .  l 

Theorem. Let b be an element of the matrix realisation of  the canonical 
form ~ .  Then the similarity transformation to the so(2l + 1 - 2r, 2r) Lie 
algebra (for r = 0, 1 . . . . .  /) is given by 

a = SbS -1 

where 

S = (X/g)T (3.1) 

T being given by 

I 1, ] = 2 k - 2 ,  k = 2 , . . . , l +  I, and ] = 2 k - 2 1 - 2 ,  

k = l +  2 , . . . , 2 l +  1 

i, j = 2 k -  3, k = 2  . . . . .  l + t  

(T)/k = - i ,  ] = 2k - 2l - 3, k = l + 2 , . . . ,  21 + 1 (3.2) 

-,/2, / = 2 l +  1, k =  1 
0, all o ther / ,  k, 

provided that the diagonal elements of  g of  (1.1) are arranged so that 

g2/,zj =g2i-1,2/-1, ] = 1,2 . . . .  l (3.3) 

and 

g2i, t,2i+t =g2j-l,2/-lexp{oei(h)), ] =  I, 2 , . . . , l  (3.4) 

where exp {c~/(h)} are given by equations (2.1). In particular the elements ill/ 
of ~ C) f a r e  transformed so that 

S(ihj)S_l = t -M2j+l,2]+2 + M2j_l,2], ]= 1 . . . . .  l-- 1 (3.5) 
2M2z- t, 2 l ,  / = t 

where 

M / k  = e /k  - ek./ 

It will be noted that the only dependence of S on the elements of  g lies in 
the factor x/g of  (3.1), which is defined to be the diagonal matrix such that 

I1, ifgj]= 1 
(x/g)]] = i, if g# = --1 
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T is the matrix that  performs the corresponding similarity transformation for 
the compact case r = 0 (Cornwell, 1971a, Appendix B). The remarkable aspect 
of  the theorem is that S can be cast in such a simple form for all cases. 

Of  course it is possible to rearrange the diagonal elements of g so as to 
bring all the elements of  the same sign together by a further similarity trans- 
formation. For example a further similarity transformation with the matrix 
U (where Uts = Ust = 1, Ujj = 1 for f  = 1 . . . . .  2l + 1, j :/: s, t, and all other 
elements zero), which interchange rows s and t and columns s and t, will 
correspond to interchanging gss and gtt. 

Before outlining the proof  of  the theorem, two examples will be given for 
l = 2, for which 

0 1 0 1 
T =  0 0 i 0 

0 0 1 0 
~¢/2 0 0 0 0 /  

For r = 1, i.e. for a mapping onto so(3, 2), equations (2.1), (3.3), and (3.4) imply 
that  the diagonal elements o f g  are such that gs5 = -g44  = --g33 =g22 = g l l -  
For r = 2, i.e. for a mapping onto so(4, 1), equations (2.1), (3.3), and (3.4) 
imply that  - g s s  =g44  =g33  =g22 = g l l .  

In proving the theorem consider first the compact  case in which r = 0, 
g]j = 1 f o r j  = 1 , . . . ,  2l + 1, and S = T. As implied in Section 2, a general 
element o f ~  c has the form 

1 

j= l  c~ 

where the Xj are real and the ~-~ are complex. The requirement that  a he real 
implies that: 

T (~ j )T  -1 must be real, for j = 1, 2 , . . . ,  l (3.6) 

and, as all the matricese~, e_~ are real: 

e~ = (T-I T*)e~(T -1T*)-I (3.7) 

for every root a.  Also the requirement that a satisfies (1.1) (i.e. ~ + a = 0 in 
this case) implies that 

ST = 7(;  (3.8) 
where 7 is some constant and G is given by (2.6). The simplest matrix T 
satisfying (3.6), (3.7) and (3.8) is that given in (3.2). Moreover this T has 
the property that 

T(ih/)T-1 = I -M2/+1'21+2 + M2/-  1'21' ] =  1 . . . .  , 1 - -  1 (3.9) 
2M2l -  1, 21, j -- l 

Turning now to the non-compact  cases for which r ~ O, the tentative 
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assumption will first be made that S has the form (3.1). It then has to be 
verified that a is real and satisfies (1.1) for an appropriate ordering of  diagonal 
elements ofg .  (The traceless condition is automatically satisfied.) But a satis- 
fies (1.1) while every element of~CPsatisfies (2.5) if and only if 

ggs = (3.10) 

where 7' is some constant. However, as a consequence of (3.8), the form (3.1) 
satisfies (3.10) automatically. 

The reality conditions on a are more complicated. Firstly, as ih 1,/hE . . . . .  
ttil are all basis elements ofoL~°(as well as of.We), the reality condition implies 
that S(ihj)S -1 must be real for ]  = 1 . . . . .  l. Taken with (3.1) and (3.9), this 
implies that ( @ - 1 M 2 1 _  1, 2](x/g) must be real for ] = 1 . . . . .  l, which can be 
ensured by the requirement (3.3) (as then x/g commutes with all M2j_ 1,2j)- 

Secondly, if exp {a(h)} = +1, (e~ + e-e)  and i(ec~ - e-c~) are members of 
~ ( a s  well as of~,fe), so that, as in (3.7), the reality condition implies that 

% = (S-1S*) e-~(S-1 S*)-1 (3.11) 

Similarly, if exp {a(h)} = - 1 ,  as i ( e e  + e-e)  and (ee - e-c0 are then basis 
elements o f ~ ,  (3.11) is replaced by 

% = - ( S  -1 S*)e-a(S -1 S*)-1 

Both cases can be taken together in the requirement that 

% = exp {a(h)}(S -1S*) e-e(S -1 S*)-1 

With the form (3.1), as (~/g)-I  = (x/g)*,  on using (3.7) this requirement 
becomes that 

e_e = exp (e(h)}(T -1 gT) e-e(T-1 gT)-I  (3.12) 

for every root c~. However, with T given by (3.2), and with (3.3) satisfied, 

T-1 gT = diag {g2~ + 1,2l+ 1, g l  t ,  g33 . . . . .  g2l - 1,2t-- 1, g11,  g33 . . . .  , g2l - -  1,27-- 1 } 

(3.13) 

It is then easily verified that if (3.12) is satisfied for the simple roots, then it 
is satisfied for all the roots, both positive and negative. As e_e = -~a ,  (2.7) 
and (3.13) show that (3.12) is satisfied for the simple roots if and only if 
(3.4) is satisfied. Thus all the reality conditions on a are met i fg  is chosen in 
accordance with (3.3) and (3.4). 

4. S imi lar i t y  T r a n s f o r m a t i o n  f r o m  the  Canonica l  F o r m  to  so(21 - 2r, 2r), 
r = 0, 1 . . . . .  [½l] 

T h e o r e m .  Let b be an element of  the matrix realisation of  the canonical 
formica. Then the similarity transformation to the s o ( 2 l  - 2r ,  2r) Lie algebra 
(for r = 0, I , . . . ,  [½/]) is given by 

a = S b S  - I  ( 4 . 1 )  
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S = (~v/g) T (4.2) 

and T is now given by 

l 1, f = 2k, k = 1 . . . . .  l, and 

j = 2 k - 2 l ,  k = l +  l , . . . , 2 l  

(T)/k = i, j = 2k - 1, k = 1 , . . . ,  l (4.3) 

- i ,  j = 2 k - 2 1 - 1 ,  k = l + l , . . . , 2 l  

0, all other j, k 

provided that the diagonal elements o fg  of (1.1) are arranged so that 

g2j,2j = g2j -  1,2j- 1, / = 1 . . . .  , l (4.4) 

and 

gzj+2,zj+2 =gzL2j exp{cg(h)}, J = 1 , . . . ,  l - 1 (4.5) 

where exp {ai(h)} are given by equations (2.2). In particular the elements 
l~tj of  Jr A 2-Care transformed so that 

S(ihi)S_ a = { -M2i+l,zj+2 + M2j-~,zj, ] =  I , . . . , l -  1 (4.6) 
M21_ 3,21_ 2 + M21_ l, Zl, j = l 

Again the only dependence of  S on g lies in the factor v/g. Also T is again 
the matrix that performs the similarity transformation for the compact case 
r = 0, so (4.6) is also satisfied with S replaced by T. As the canonical form 
~ i somorph ic  to so(21 - 2r, 2r) is generated by an inner involutive automor- 
phism, the method of  proof of  this theorem is identical to that given for 
so(21 + 1 - 2r, 2r). 

As an example consider the case t = 3 and r = 1, i.e. the mapping onto 
so(4, 2). Equations (2.2), (4.4) and (4.5) then imply that -g66  = - - g s s  = 

- -g44  = - - g 3 3  = g 2 2  = g l l -  

5. Similarity Transformation from the Canonical Form to 
so(2l - 2r - 1, 2r + 1), r = 0, 1 . . . . .  [½/] 

Theorem. Let b be an element of the matrix realisation of  the canonical 
f o r m f .  Then the similarity transformation to the so(2l - 2r - 1,2r  + i) Lie 
algebra for r = 0, 1 , . . . ,  [½l], is given by (4.1), where S is again given by 
(4.2) and T by (4.3), provided that the diagonal elements of  g of  (I .  1) are 
arranged so that 

g2j,2i=g2j_l,2j_l, f =  1 , 2 , . . . , 1 - -  1 (5.1) 

but  

g2t,2t = - g 2 l -  1,2t- 1 (5.2) 
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and 

g21+2,2]+2 = g2],21 exp (cq(h)}, j = 1, 2 . . . . .  t (5.3) 

where exp {c~/(h)} are given by equations (2.3) or (2.4). In particular the 
elements o f :F  O ~°are transformed so that 

S(ih/) S-1 = - M 2 / +  1,2]+2 + M 2 ] -  1,2/, 

S {i(hi_ 1 + hi)) S-1 = 2M2t-  3,21- 2 

S { h l _  1 -- hz}S-1 = 2g2t,2tN2l_ 1,2l 

where 

N]k =eik + ek! 

i1 ..... 2 1  

As an example consider the case l = 2 with r = 0, i.e., the mapping onto 
so(3, 1). Equations (2.4), (5.1), (5.2), and (5.3) then imply that - g44  = g 3 3  = 

g22 = g t  1, and S{i(hl  + h2)}S - I  = 2Mlz, S{hl - h2}S -1 = - 2 g a  1 , N 3 4 .  

The canonical form ~ f  isomorphic to so(2l - 2r - 1, 2r + 1) is generated 
by an outer invotutive automorphism, so that the method of proof  given in 
Section 3 has to be modified. However, it is still true that with the form 
(4.2) for S, the condition (1.1) is automatically satisfied, so that it is only 
necessary to consider the reality conditions on a. 

As before, for the basis vectors ihi, / = 1 , . . . ,  l - 2, and i (h t -  1 + hi) the 
reality condition implies that (v/g)-aM2/_ 1,2/(v/g) must be real f o r / =  1, 2, 
. . . .  l - 1, which can be ensured by the requirement (5.1). However, for the 
basis element ( h i -  1 - hi) (as (4.6) is also satisfied by S replaced by T), 
S ( h t _  1 - -  h i )  S -1 = (x /g ) - I  2 i M 2  t _ t,2/(x/g), which is real if and only if 
gz t -1 ,2z-1  = --g21,2l, and when this is so S(ht_ 1 - hl)S -1 = 2g21,2zNzl- 1,2z. 
For the other basis vectors it is easily shown that the generalisation of the 
condition (3.12) is 

% = exp {a(h) }(T-1 gT) (Zo%}(T-1 gT)- I  (5.4) 

where Z 0 is the automorphism described in Section 2. It is easily verified that 
if (5.4) is satisfied for the simple roots, then it is satisfied for all the positive 
roots, and for the negative roots as well if 

(T -1 gT)jk = (T- lgT)kj ,  j, k = 1 . . . . .  21 (5.5) 

But, with (4.3), (5.1) and (5.2), 

(T-IgT)]/=g2]+1,2]+t,  ]= 1 , . . . , l -  1 ] 

-1 ] = l + 1, 2t 1 i' (5.6) (T g T ) j j  = g 2 ] _  2 1 _  l, Z j _  2 l _  l ,  . . . ,  - -  

(T-1 gT)l,2t = (T -1 gT)2u = g21,2l 

with all other elements zero, so that (5.5) is satisfied. It is therefore only 
necessary to test (5.4) for the simpte roots. For e l ,  t~2, - .  -, c~l-2, asZ0ej  = % 
the condition (5.4) is equivalent to (3 . I2)  and again gives (5.3) (for/" = I,  2, 
. . . .  l - 2). For al _ 1 and al, as Zoel_ 1 = el and Zoe l = ez-  1, by (2.9) and 
(5.6) the condition (5.4) is satisfied ifg2t,21 = g2t-2,2l-2 exp (eq(h)}. 
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6. Mapping o f  the Maximal Compact Subalgebra 

The 'natural' maximal compact subalgebra Y of 5('may be defined as the 
set of elements b E,LPsuch that Zb = b, where Z is the chief involutive auto- 
morphism described in Section 2. Of course any automorphism of ~apptied 
to ~(" gives another maximal compact subalgebra of L~athat is isomorphic to ~ .  

The 'natural' maximal compact subalgebra 0~/" of so(p, q) may be defined 
as the set of matrices a E so(p, q) such that apq = 0 ifgpp @gqq, where g is 
the matrix of equation (1.1). ClearlyJY"is isomorphic to so(p) • so(q), and 
again any automorphism of so(p, q) applied tong" gives another maximal sub- 
algebra of that is isomorphic to SU'. 

Theorem. The isomorphic mappings ofA a onto so(p, q) considered in 
Sections 3, 4 and 5 each map the natural maximal compact subalgebra 14{ 
onto the natural maximal compact subalgebraS' .  

It is obvious that ,~f" must be mapped onto a subalgebra of so(p, q) that is 
isomorphic to ~/". What is remarkable about this theorem is that if{" is 
mapped directly onto ~ '  itself. 

An outline of the proof will be given for the cases in which Z is an inner 
automorphism. (The case in which Z is an outer automorphism is more 
difficult. In fact the simplest approach for this case is that of direct verifica- 
tion.) If Z = exp (ad h) is a chief inner automorphism, the basis elements of 
if{consist of ih],] = 1 . . . . .  l together with (ca + e-a) and i(ea - e-a) for 
roots a such that exp (a(h)} = +1. It follows immediately from equations 
(3.5) and (4.6) (taken with (3.3) and (4.4) respectively) that ih],] = 1 . . . .  , l 
are mapped into J{". For (ec~ + e-a) and i(ea - e-a) with exp (a(h)) = 1, as 
~¢/g is diagonal and as Te-~T -1 = (Te~T-1) * by (3.7), it has only to be shown 
that (Tec~T-l)pq = 0 when gpp ~gqq. In fact it is easier to demonstrate the 
more general proposition that (TeaT-l)pq = 0 when gpp 4: gqq exp (a(h)) for 
every root a, for if this proposition is true for the simple roots then it is true 
for all the roots. But equations (3.3), (3.4), (4.4) and (4.5) show that the 
proposition is true for the simple roots, as direct calculation for Bt gives 

½ (M2j- 1,2i+ 1 + iM2]_ 1,2/'+2 - iM21,2j+ 1 
TejT -1 = + MzL2/+2} {2(2 / -  1)) -1/2, ] = 1 . . . . .  l -  1 

± M  2( 2l+t,21+iM2l+1,21-I)( 2 l -  1} -1/2, ]=I 

and for Dl gives 

(½~¢[2j- 1,2/+ 1 + iM2]- 1,2j+2 - iM2j,2j+ I 
TejT-1 = ~ + M2j,2j+2)(4(21- 1)} -1/2, ] = 1 , . . . ,  I -  1 

] 1 (_ Mz / _ 3,21-1 + iMzl-3,21 + iM2l- 2, 21- 1 
~. + M2/- 2,2l] {4( l  - 1)}-1/2 ,  ] = l. 
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